<em id="55lzb"></em>
<form id="55lzb"></form>
    <form id="55lzb"><th id="55lzb"><th id="55lzb"></th></th></form>

    <address id="55lzb"><listing id="55lzb"><meter id="55lzb"></meter></listing></address>

      2020-06-08

      鋰電池極片擠壓涂布厚邊現象及解決措施

      分享到:

      鋰電池極片擠壓涂布厚邊現象及解決措施

      在鋰電池工業生產上,模頭擠壓涂布由于高精度、寬涂布窗口、高可靠性等優點成為應用最廣泛的涂布方式。如圖1所示,漿料由精確的進料系統(如螺桿泵)提供,進入模頭內部型腔,在涂層寬度方向均勻分布,最后漿料受擠壓通過模頭狹縫,在移動的基材上形成涂層。由于漿料流體特性,在涂層起始點、終止點以及兩側邊緣容易形成如圖1中所示半月形特征。涂布工藝中,極片邊緣出現的這種厚度突增的形貌被稱為厚邊現象。

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖1)

      擠壓涂布示意圖

       

      根據電池的結構設計和對應的工藝設計,鋰電池極片涂布工藝可分為連續涂布和間歇涂布,如圖2所示,連續涂布中,對電池性能和工藝有影響的厚邊問題主要在涂層兩側邊緣,而對于間隙涂布,除了兩側邊緣,涂層的起始和結束邊緣(頭尾)同樣可能存在這種厚邊情況。這種厚邊現象是不期望出現的,并會對電池的工藝過程和電池性能和一致性產生問題。

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖2)

      連續涂布和間歇涂布方式結構示意圖

       

      厚邊現象的危害

       

      不管是連續涂布還是間歇涂布(如圖2所示),這種半月形形貌特征都會嚴重影響涂層的均勻性。一般地,涂層邊緣厚度比正常區域厚幾微米至十幾微米,在涂布干燥后收卷時,成百上千層極片收成一卷,涂層側面邊緣厚度凸起線累積成幾毫米,導致極卷產生鼓邊現象,嚴重時會造成極片斷裂,這嚴重影響涂布收卷整齊度及其后續工序。

       

      這種厚邊情況也會影響極片的輥壓工藝,由于邊緣厚度較中間部位大幾微米或十幾微米,輥壓軋輥壓力作用在極片上時,邊緣厚度大的區域承受更大的軋制力,從而導致極片輥壓壓實橫向密度不一致,一方面這會造成輥壓之后的極片翹曲度更大形成蛇形極片,在后續的分條或模切、卷繞等工藝過程中,極片張力分布不均衡,極片收放卷對齊度無法保證,這也會影響極片加工尺寸,容易出現不良品。

       

      厚邊現象造成的極片厚度、壓實密度不均勻同樣對電池性能有影響,在充放電過程中,可能出現電流分布不均勻,更容易形成極化。因此,電池極片在充放電膨脹、收縮過程中受力也不一致,厚邊緣更容易失效。

       

      一般地,3C電池工藝設計時,切除極片邊緣來消除這種厚邊的不利影響。而動力電池要求高功率和高能量,電池設計往往需要保留涂層邊緣,因此,厚邊現象更受關注,Marcel Schmitt等人就研究了涂布工藝參數對連續涂布兩側厚邊的影響,期望理解和認識產生這種情況的原因。

       

       

      厚邊現象的定量描述

       

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖3)

      涂層邊緣厚度突增典型形貌圖

       

      為了分析涂層的邊緣效應,作者引入一些特征參數來定量表征涂層的厚邊現象。如圖3所示,這是涂層邊緣厚度突增典型形貌圖,涂層中間厚度為H(圖3H=100μm),而涂層凸起點的厚度為HEdge,無量綱厚度H*定義為式(1):

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖4)          (1)

      理想情況下,H*等于1,極片涂層邊緣沒有厚邊情況產生。

       

      公式(2)定義涂層厚邊緣的無量綱寬度:

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖5)   (2)



      其中,B*為厚邊緣的無量綱寬度,BEdge 為厚度凸起的涂層寬度,測量涂層的厚度,厚度值第一次檢測到為H105%時的位置定義為BEdge 的起點,繼續橫向測量厚度再變為H時位置定義為BEdge的終點,如圖3所示,一般鋰電池涂布中H*甚至能達到10以上。而厚邊涂層的梯度R*定義為式(3)::

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖6)    3


      其中,BStep的終點位置為第一次檢測極片厚度為集流體厚度的105%的位置。

       

      以上三個無量綱參數用來定量描述極片涂層厚邊緣的厚度、寬度和梯度特征。

       

      厚邊現象的影響因素

       

      影響極片涂層厚邊現象產生的因素主要有幾個方面:(1)涂布模頭的幾何特征及涂布工藝參數,模頭擠壓涂布流場示意圖如圖4所示,模頭幾何參數和涂布工藝參數包括狹縫尺寸S、模頭出口漿料流量q、模頭與涂輥間隙尺寸G、涂布速度U、涂層濕厚H等;(2)漿料的性質,特別是漿料表面張力。

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖7)

      模頭擠壓涂布外流場二維截面示意圖

       

      1)涂布速度的影響

       

      Marcel Schmitt等人鋰離子電池負極漿料涂布工藝實驗研究發現,涂布速度對厚邊的無量綱厚度和寬度幾乎沒有影響,而會影響厚邊的梯度特征R*,當涂布速度增加時,R*相應增加,即厚邊緣厚度變化更尖銳,如圖5所示。

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖8)

      涂布速度與厚邊梯度的關系

       

      2)涂布間隙的影響

       

      1986年,Dobroth等人總結了厚邊涂層厚度與涂布工藝的經驗公式(4):

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖9)   4

      其中,D為漿料拖曳力比值,定義為涂布速度U與漿料在出口的平均速度USlurry比值,具體可由式(5)計算:

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖10)  5 


      式中,q為漿料體積流量,H為涂層濕厚,G為涂布間隙。因此,厚邊涂層厚度與無量綱涂布間隙G*相關。    

       

      6為無量綱涂布間隙G*與厚邊無量綱厚度H*的實驗數據圖和公式預測關系,根據經驗公式,涂布間隙增加時厚邊厚度相應增加,但是從實驗數據來看相關性不是特別大。而隨著涂布間隙增加,厚邊涂層的寬度增加,如圖7所示。因此,減低涂布間隙是抑制厚邊現象的一個有效措施。   

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖11)

      涂布間隙與厚邊厚度的關系

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖12)

      涂布間隙與厚邊寬度的關系


      3)表面張力的影響

      另外,漿料性質對厚邊也具有巨大影響,一方面從模頭擠壓噴出時,粘彈性漿料流體會發生膨脹,由于受到模頭邊緣壁面的額外應力作用,邊緣處漿料膨脹效應更明顯,從而導致厚邊現象產生。另外,漿料的表面張力作用下,涂層在干燥過程中發生流延也會造成厚邊現象。如圖8所示,涂層干燥時,各處干燥速度相同,而邊緣處溶劑蒸發更快些,因此邊緣成分變化更快時,如果漿料里面沒有界面活性劑等添加劑,或者分散的顆粒懸浮液表面張力大于溶劑的表面張力時,漿料向邊緣流動,最終導致厚邊現象。

      鋰電池極片擠壓涂布厚邊現象及解決措施(圖13)

      干燥過程中厚邊現象產生過程

       

      厚邊現象的解決措施

      涂布厚邊現象是一種不利的缺陷,根據以上實驗結果和分析,阻止和緩解厚邊現象的措施有:

      1)漿料流量一定時,減小狹縫尺寸能夠增加漿料在模頭的出口速度,從而降低漿料的拖曳力比值D,進而減小厚邊涂層的無量綱厚度H*,但是狹縫尺寸變小模頭內部的壓力更大,更容易造成模頭出口形狀的膨脹,從而出現涂層橫向厚度不均勻性,這需要更高精度的涂布設備配合。

      2)涂布間隙G減小能夠有限減小厚邊涂層的厚度和寬度。

      3)降低漿料的表面張力,如添加界面活性劑、降低粘度等,抑制干燥過程中漿料向邊緣的流延。

      4)優化狹縫墊片出口形狀,改變漿料流動速度方向和大小,降低邊緣漿料的應力狀態,減弱漿料邊緣膨脹效應。


      上一篇:鋰離子電池極片裁切技術簡介
      下一篇:鋰離子電池超聲焊接原理及影響因素

      在線咨詢

      服務熱線

      咨詢電話: 0755-28909182 13824381687

      官方微信

      欧美日韩在线无码一区二区三区_日本高清不卡一区二区三区_黄色视频网站_欧美经典三级中文字幕